Data Mining to Identify Grading Practices

Nida Rinthapol

Kelly Wahl

Academic Planning and Budget

WSCUC 2013 Handbook of Accreditation Standard 4, CFR 4.4

Guideline:

Periodic analysis of grades and evaluation procedures are conducted to assess the rigor and effectiveness of grading policies and practices.

Enhancing Student Success and Building Inclusive Classrooms at UCLA http://www.evc.ucla.edu/reports

Report to the Executive Vice Chancellor and Provost December 2015

Sylvia Hurtado

Professor, Graduate School of Education and Information Studies Director, Higher Education Research Institute

Victoria L. Sork

Dean, Life Sciences, UCLA College

With support from:

Kelly Wahl Director of Statistical Analysis Academic Planning and Budget Erin R. Sanders

Director, Center for Education Innovation and Learning in the Sciences **Tracy Teel** Graduate Student Researcher Analysis

Dimonsion	Criterion-Referenced	Norm-Referenced
Dimension	Tests	Tests
Purpose	To determine whether each student has achieved specific skills or concepts. To find out how much students know before instruction begins and after it has finished.	To rank each student with respect to the achievement of others in broad areas of knowledge. To discriminate between high and low achievers.
Content	Measures specific skills which make up a designated curriculum. These skills are identified by teachers and curriculum experts. Each skill is expressed as an instructional objective.	Measures broad skill areas sampled from a variety of textbooks, syllabi, and the judgments of curriculum experts.
Item Characteristics	Each skill is tested by at least four items in order to obtain an adequate sample of student performance and to minimize the effect of guessing. The items which test any given skill are parallel in difficulty.	Each skill is usually tested by less than four items. Items vary in difficulty. Items are selected that discriminate between high and low achievers.
Score Interpretation	Each individual is compared with a preset standard for acceptable achievement. The performance of other examinees is irrelevant. A student's score is usually expressed as a percentage. Student achievement is reported for individual skills.	Each individual is compared with other examinees and assigned a scoreusually expressed as a percentile, a grade equivalent score. Student achievement is reported for broad skill areas, although some norm-referenced tests do report student achievement for individual skills.

Table adapted from: Popham, J. W. (1975). *Educational evaluation*. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

Our learning outcomes

- Identify grading practices
- Prepare data set for analysis
- Perform data mining analysis in **SPSS**

Data Mining Exercise

Please go to the link below to get the practice data file and syntax.

http://www.kellywahl.com/CAIR2016/CAIR2016_Files.htm

K-Means Cluster Analysis

A machine learning algorithm applied to a large dataset to identify patterns among cases.

Scholarly Citation of Method:

MacQueen, J. B. (1967). <u>Some Methods for Classification and Analysis of Multivariate Observations</u>. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. pp. 281–297. <u>MR 0214227</u>. <u>Zbl 0214.46201</u>.

Other Descriptions of the Technique:

<u>http://www.galvanize.com/blog/introduction-k-means-cluster-analysis/#.VvLhkTFvnpw</u>

Uses Python, but explains the method and its steps.

 <u>http://www.umass.edu/landeco/teaching/multivariate/sched</u> <u>ule/cluster1.pdf</u>

Discusses more methods.

• <u>http://www.slideshare.net/EdurekaIN/k-means-clustering</u> Mentions the "elbow method" by name!

The flow

Capture the data

One record per student per term per course offering, with the final grade on each record.

In **SPSS**, it will look like this:

	💑 id	🚜 term	윩 subject	💑 catlg_no	🔏 sect_no	💑 grade
ſ	1	Year1Term3	ANTHRO	0045	001	C+
ſ	5	Year1Term3	ANTHRO	0045	001	A
ſ	9	Year1Term3	ANTHRO	0045	001	С
ſ	10	Year1Term3	ANTHRO	0045	001	A-
ſ	11	Year1Term3	ANTHRO	0045	001	B-
ſ	12	Year1Term3	ANTHRO	0045	001	B+
	14	Year1Term3	ANTHRO	0045	001	В
ſ	20	Year1Term3	ANTHRO	0045	001	В
ſ	21	Year1Term3	ANTHRO	0045	001	B+
ſ	SDA	Y ar tring	• NTH IO	ean	00	ata!
ſ	31	Year1Term3	ATHRO	0045	001	в
ſ	32	Year1Term3	ANTHRO	0045	001	В
ſ	33	Year1Term3	ANTHRO	0045	001	B-
	34	Year1Term3	ANTHRO	0045	001	A-
ſ	43	Year1Term3	ANTHRO	0045	001	С
	50	Year1Term3	ANTHRO	0045	001	С
	60	Year1Term3	ANTHRO	0045	001	A
	66	Year1Term3	ANTHRO	0045	001	В
	70	Year1Term3	ANTHRO	0045	001	В
	72	Year1Term3	ANTHRO	0045	001	B+
	73	Year1Term3	ANTHRO	0045	001	B+
	79	Year1Term3	ANTHRO	0045	001	B-
l	84	Year1Term3	ANTHRO	0045	001	B+
l	88	Year1Term3	ANTHRO	0045	001	С
	90	Year1Term3	ANTHRO	0045	001	Α

*** Start with 'Course Offering Enrollments with Grades CAIR.sav' .

dataset name raw_grades WINDOW=FRONT. dataset activate raw_grades.

*** This selects only the grades that involve evaluation of student work. These will be the only course enrollments used to describe the course offerings. select if not any(grade,'DR','I','IP','L','NR','P','R','S'). execute.

*** This codes the grades below "C" as being "NP". if (any(grade,'D+','D','D-','F','NP','U')=1) grade='NP'. execute.

SORT CASES BY id term subject catlg_no sect_no .

*** Save the file in this condition.

SAVE OUTFILE='I:\student_grade_records.sav' /COMPRESSED.

* There can be no blanks or nulls in the file -- you must code a value for each piece of missing data, if any.

Structure the data

STUDENT	COURSE	GRADE
Bart	Psych 10	B+
Sally	Stats 50	А
Jennie	Chem 14	A-

changes into...

COURSE	PERC A's	PERC B'S	PERC C'S	PERC NP
Psych 10	45%	35%	15%	5%
Stats 50	25%	25%	25%	25%
Chem 14	10%	30%	30%	10%

Structure the data

💰 id	🚜 term	💑 subject	💑 catlg_no	💑 sect_no	🚜 grade
1	Year1Term3	ANTHRO	0045	001	C+
5	Year1Term3	ANTHRO	0045	001	A
9	Year1Term3	ANTHRO	0045	001	С
10	Year1Term3	ANTHRO	0045	001	A-
11	Year1Term3	ANTHRO	0045	001	B-
12	Year1Term3	ANTHRO	0045	001	B+
14	Year1Term3	ANTHRO	0045	001	В
20	Year1Term3	ANTHRO	0045	001	В
21	Year1Term3	ANTHRO	0045	001	B+
29	Year1Term3	ANTHRO	0045	001	B+
31	Year1Term3	ANTHRO	0045	001	В

*** This code restructures the file so that each letter grade becomes a separate column with a 1/0 marker for the grade.

CASESTOVARS

/ID= id term subject catlg_no sect_no /INDEX=grade /GROUPBY=VARIABLE /COUNT=total_grades "Total Grades" /VIND ROOT=grade_.

rename variables (ind1=grade_A_minus) (ind2=grade_A_plus) (ind3=grade_B_minus) (ind4=grade_B_plus) (ind5=grade_C_minus) (ind6=grade_C_plus). execute.

SAVE OUTFILE='I:\student_grade_records_restructured.sav' /COMPRESSED.

🗞 id	🖧 term	💑 subject	💑 catlg_no	💑 sect_no	& total_grad es	🗞 grade_A	Srade_A_ minus	srade_A_ plus	🗞 grade_B	grade_B_ minus	grade_B_ plus	🗞 grade_C	Srade_C_ minus	<pre>grade_C_ plus</pre>	🗞 grade_NP
3	Year1Term3	ANTHRO	0045	001	1	0	0	0	1	0	0	0	0	0	0
21	Year1Term3	ANTHRO	0045	001	1	0	0	0	0	0	1	0	0	0	0
28	Year1Term3	ANTHRO	0045	001	1	0	0	0	0	0	0	0	0	0	1
32	Year1Term3	ANTHRO	0045	001	1	0	0	0	1	0	0	0	0	0	0
39	Year1Term3	ANTHRO	0045	001	1	0	0	0	0	0	0	1	0	0	0
45	Year1Term3	ANTHRO	0045	001	1	0	0	0	1	0	0	0	0	0	0
46	Year1Term3	ANTHRO	0045	001	1	0	0	0	1	0	0	0	0	0	0
49	Year1Term3	ANTHRO	0045	001	1	0	1	0	0	0	0	0	0	0	0
50	Year1Term3	ANTHRO	0045	001	1	0	0	0	0	0	0	1	0	0	0
53	Year1Term3	ANTHRO	0045	001	1	0	0	0	1	0	0	0	0	0	0

Structure and aggregate the data

*** This creates a file with one row per course offering, each letter grade column tallying how many enrollments in the

course received the grade.

DATASET ACTIVATE raw_grades.

DATASET DECLARE courses_grades.

AGGREGATE

Year1Term3

/OUTFILE='courses_grades'

/BREAK=term subject catlg_no sect_no

/total_grades_sum=SUM(total_grades) /grade_A_sum=SUM(grade_A)

/grade_A_minus_sum=SUM(grade_A_minus)/grade_A_plus_sum=SUM(grade_A_plus)

/grade_B_sum=SUM(grade_B) /grade_B_minus_sum=SUM(grade_B_minus)

/grade_B_plus_sum=SUM(grade_B_plus) /grade_C_sum=SUM(grade_C)

/grade_C_minus_sum=SUM(grade_C_minus) /grade_C_plus_sum=SUM(grade_C_plus)

327.00

67.00

48.00

/grade_NP_sum=SUM(grade_NP).

ANTHRO 0045

001

🗞 id	💑 ter	m é.	a subject	💑 catlg_no	💑 sect_no	total_grad es	🗞 grade_A	grade_A_ minus	grade_A_	🗞 grade_B	grade_B_ minus	♣ grade_B_ plus	🗞 grade_C	♣ grade_C_ minus	grade_C	_ 🗞 grade_NP
3	Year1Term3	A	NTHRO	0045	001	1) (0 0	1	0	0	C	0		0 0
21	Year1Term3	A	ITHRO	0045	001	1		0 (0 0	0	0	1	0	0		0 0
28	Year1Term3	1A	VTHRO	0045	001	1		0 (0 0	0	0	0	0	0		0 1
32	Year1Term3	1A	VTHRO	0045	001	1		0 (0 0	1	0	0	0	0		0 0
39	Year1Term3	1A	VTHRO	0045	001	1		0 (0 0	0	0	0	1	0		0 0
45	Year1Term3	A	VTHRO	0045	001	1		0 (0 0	1	0	0	0	0		0 0
46	Year1Term3	A	VTHRO	0045	001	1		0 0	0 0	1	0	0	0	0		0 0
49	Year1Term3	1A	VTHRO	0045	001	1		0 1	I 0	0	0	0	0	0		0 0
50	Year1Term3	A	VTHRO	0045	001	1		0 (0 0	0	0	0	1	0		0 0
53	Year1Term3	A	VTHRO	0045	001	1	(0 (0 0	1	0	0	0	0 0		0 0
								Ĺ	ļ							
🚜 term	💑 subject	🖧 catlg_no	💑 sect_no	🖋 total_grades_s	um 🔗 grade_	A_sum 💡 gra	de_A_minus 📣	grade_A_plus	🖋 grade_B_sum		u 🕜 grade_B_p	lus 🔗 grade_C	_sum 🕜 grad	le_C_minus_ 🔗	grade_C_plus	🖋 grade_NP_sum

.00

102.00

21.00

27.00

28.00

3.00

19.00

12.00

Adding grade percentage variables

*** This calculates percentage values to describe the frequency of each letter grade awarded in the course offering.

dataset activate courses_grades.

compute A_plus_perc=grade_A_plus_sum/total_grades_sum.

compute A_perc=grade_A_sum/total_grades_sum.

compute A_minus_perc=grade_A_minus_sum/total_grades_sum.

compute B_plus_perc=grade_B_plus_sum/total_grades_sum.

compute B_perc=grade_B_sum/total_grades_sum.

compute B_minus_perc=grade_B_minus_sum/total_grades_sum.

compute C_plus_perc=grade_C_plus_sum/total_grades_sum.

compute C_perc=grade_C_sum/total_grades_sum.

compute C_minus_perc=grade_C_minus_sum/total_grades_sum.

compute NP_perc=grade_NP_sum/total_grades_sum.

execute.

alter type A_plus_perc to NP_perc (F8.5). execute.

💑 term	灥 subject	🎝 catlg_no	🖧 sect_no	🖋 total_grades_sum	🖋 grade_A_sum	∦ grade_A_minus	🔗 grade_A_plus	🖋 grade_B_sum	🔗 grade_B_minu	∦ grade_B_plus	🖋 grade_C_sum	🔗 grade_C_minus_	∦ grade_C_plus	🖋 grade_NP_sum
						♥sum	▼sum		▼ s_sum	▼sum		* sum	▼sum	
Year1Term3	ANTHRO	0045	001	327.00	67.00	48.00	.00	102.00	21.00	27.00	28.00	3.00	19.00	12.0C
🔗 A_plus_p	erc	🔗 A_perc	s 🖉	A_minus_perc	🔗 B_plus	_perc 🛛 🛷	B_perc	🔗 B_minus_p	erc 🛛 🔗 C	_plus_perc	🛷 C_perc	🔗 C_min	us_perc	🔗 NP_perc
	00000	.204	189	.14679	9	.08257	.31193	.0	6422	.05810	.0858	3	.00917	.03670

Perform the analysis

First you agglomerate, then you partition...

Q

g

pq

pq

pq

g

uster

🖹 Title

Ward Linkage

Call Vertical Icicle

Agglomeration Schedule

🖻 Title

File Edit View Data Transform Insert Format Analyze Graphs Utilities Add-ons Window Help

Ì.

.000

.000.

.000.

.000.

12 🖻 🝺 E INUICO Active Dataset Agglomeration Schedule 🗓 Warnings Cluster Combined Stage Cluster First Generated Variables Cluster 1 Stage Cluster 2 Coefficients Cluster 1 Cluster 2 Next Stage Processing Statistics .000 .000 ataset Activate .000. Title .000 Notes .000. 🚯 Warnings .000 ter Type .000 🔄 Title .000. A Notes .000 🖺 Active Dataset .000. 🕦 Warnings .000. .000 ataset Close .000. 🖹 Title .000 Notes 🖹 Active Dataset .000 🗓 Warnings .000. .000 ataset Activate .000. 🔄 Title .000 Notes .000 🚯 Warnings .000. .000. ataset Declare 🖻 Title .000 Notes .000. 🗓 Warnings .000 .000. ter Type .000. Title .000 Π Notes .000. 🖺 Active Dataset .000 Altered Types .000. ataset Close .000. 🔄 Title .000 Notes .000. Active Dataset .000 🚯 Warnings .000. .000. .000. .000. Notes .000. Active Dataset Case Processing Summary .000

*** This clusters using Ward's Method and produces the coefficients that become your criteria for choosing the number of cluster groups.

+ -

 UCLA

DATASET ACTIVATE courses grades. CLUSTER A_plus_perc A_perc A_minus_perc B plus perc B perc B minus perc C plus perc C perc

C_minus_perc NP_perc /METHOD WARD /MEASURE=SEUCLID **/PRINT SCHEDULE** /PLOT VICICLE.

Accessing number of cluster

Stag						Next			
e	Cluster C	ombined	Coefficients	Stage Cluster I	First Appears	Stage			
970	1	38	16.071	951	943	975	0	0.019475	0
971	47	64	16.391	962	922	985	0	0.019912	
972	12	41	16.727	950	949	984	(0.020499	0.4
973	28	31	17.072	966	961	981	(0.020625	
974	39	77	17.437	938	942	979		0.02138	0
975	1	33	17.855	970	909	986	(0.023972	
976	5	16	18.281	939	941	979	().023859	0.3
977	7	21	18.855	969	957	984	(0.031399	
978	24	145	19.436	937	775	983	(0.030814	0
979	5	39	20.064	976	974	987	(0.032311	
980	10	155	20.752	968	945	981		0.03429	0.2
981	10	28	21.748	980	973	985	(0.047995	
982	3	17	22.838	965	958	986		0.05012	0
983	2	24	24.234	967	978	990	(0.061126	
984	7	12	25.683	977	972	987	(0.059792	0.1
985	10	47	27.171	981	971	989	(0.057937	
986	1	3	28.823	975	982	988		0.0608	0
987	5	7	31.042	979	984	989	(0.076987	,
988	1	61	36.08	986	963	990	(0.162296	0.0
989	5	10	42.091	987	985	991	(.166602	
990	1	2	50.13	988	983	991	(.190991	
991	1	5	72.509	990	989	0	().446419	
								1	
			=(72 5	09-50 13) / 50 13	2 🔺			
			1 (, 2.3	55 50.IJ	,,	<i>,</i>			

Final cluster output

					Final Clu	ster Cente	rs					
						Clust	er					
	1	2	3	4	5	6	7	8	9	10	11	12
A_plus_perc	0.04596	0.05253	0.36618	0.04681	0.82459	0.03075	0.02963	0.03289	0.01897	0.09032	0.06874	0.03379
A_perc	0.84188	0.36203	0.32079	0.34267	0.12210	0.18418	0.23296	0.10715	0.10860	0.54718	0.20101	0.20148
A_minus_perc	0.05751	0.16538	0.14046	0.34355	0.01849	0.05869	0.09114	0.11698	0.16045	0.17409	0.14654	0.26768
B_plus_perc	0.01815	0.13114	0.05171	0.12839	0.01166	0.08832	0.09075	0.12764	0.19426	0.07063	0.14041	0.20857
B_perc	0.02320	0.13413	0.05618	0.07451	0.00754	0.18901	0.30369	0.14013	0.22563	0.06232	0.13165	0.14847
B_minus_perc	0.00386	0.05258	0.02218	0.03081	0.00355	0.06319	0.06047	0.11017	0.12525	0.02018	0.08950	0.06536
C_plus_perc	0.00185	0.03146	0.01223	0.01041	0.00000	0.06687	0.04356	0.10544	0.06449	0.00808	0.06765	0.03085
C_perc	0.00450	0.03216	0.01051	0.00820	0.00000	0.18113	0.09232	0.09526	0.04855	0.01229	0.06027	0.01840
C_minus_perc	0.00000	0.01015	0.00482	0.00296	0.00000	0.04906	0.01954	0.06347	0.02079	0.00574	0.03405	0.00761
NP_perc	0.00307	0.02843	0.01494	0.01169	0.01207	0.08879	0.03593	0.10087	0.03300	0.00918	0.06019	0.01778

Number of Cases in each Cluster								
Cluster	1	33.000						
	2	111.000						
	3	57.000						
	4	70.000						
	5	6.000						
	6	65.000						
	7	63.000						
	8	142.000						
	9	122.000						
	10	62.000						
	11	135.000						
	12	126.000						
Valid		992.000						
Missing		0.000						

This performs the clustering using K-means cluster analysis -- you need to edit the code below (i.e., "CLUSTER(##)") to indicate the number of clusters you are requesting.

dataset activate courses_grades.

QUICK CLUSTER A_plus_perc A_perc A_minus_perc B_plus_perc B_perc B_minus_perc C_plus_perc C_perc

C_minus_perc NP_perc /MISSING=LISTWISE

/CRITERIA=CLUSTER(12) MXITER(100) CONVERGE(0)

/METHOD=KMEANS(NOUPDATE)

/SAVE CLUSTER

/PRINT INITIAL.

Interpret the findings

- Examine our visualizations
- Identify the grading practices
- Consider our groups

Audience Participation!

Mostly A's and B's: Criterion Referenced Grading

Proportions Pre-Defined: Norm Referenced Grading

Data Mining to Identify Grading Practices

Kelly Wahl Nida Rinthapol

