An Integrated, Program-Level Approach to Enrollment Planning

Ryan Johnson, Ph.D. Office of Institutional Research U.C. Riverside

Presented at CAIR Conference - 2015

Goals for Today

- Show UCR's new approach to long-term enrollment planning
- Provide those interested in pursuing a similar process with a starting point for planning and discussion

History of Enrollment Planning Model

- Prior model used for over 10 years
- Difficult or impossible to update for some scenarios
- Did not always behave logically
- Could not answer certain important questions

Program-Level Forecasting (PLF) Model

- An entirely new approach
 - Program-specific student level model
- ~3 months in development
- ~1000 statistical models
- ~1500 lines of code
- ~60 minutes of multi-core processing time to generate the data set for a scenario
- Flexible enough for future enhancement

What Does "Model" Mean Here?

- A simulated university with enrollment projections that are determined by:
 - Administrative expectations or goals

- Statistical relationships (logistic regression models) $Retention = \alpha + \beta(Terms Enrolled)$
- Institutional policies
 10 terms after Ph.D. candidacy =

DR = PHD student

GR = Graduate student

DR = PHD student

GR = Graduate student

Continuation Rates

• Definition: the percentage of students enrolled in a term who are also enrolled in the following term

UG Program Migration

Term (i+1)

Critical dimensions to consider:

- Term Type (Fall, Winter, or Spring)
- Student Type (Freshman or Transfer)
- Terms Enrolled

UG and DR Seniority Migration

• Subsequent-term changes by program that must be statistically predicted or defined by policy rules:

GR Fee-Status Migration

 GR students move through different tuition categories depending on how long they have been enrolled and their initial residency status

DR = PHD student

GR = Graduate student

DR = PHD student

GR = Graduate student

Historical LOA Return Rates

- ~2% of non-new students in each term were not there the previous term
- Accurate enrollment models must include these returning LOA students
- A 2-step algorithm determines:
 - 1. How many LOA students return in each program/term combination
 - 2. The distribution of those students across all major subgroups of interest

DR = PHD student

GR = Graduate student

DR = PHD student

GR = Graduate student

Subgroup Proportions

- Proportions of key subgroups can stay the same or be forced to move toward some future enrollment goal (e.g., increase percentage of UG who are out of state)
- Proportions can only be manipulated for new students, and existing students will continue through their programs naturally

Headcounts

• New students within a program must be equal to:

(Future Enrollment Goal) – (Continuing) – (LOA Returners)

Future Enrollment Goals

- Unlike prior institutional research modeling efforts, program-specific enrollment goals now come directly from deans and department chairs
- Their goals are informed by current budget/planning expectations, thus aligning academic and budget/planning intentions for the first time

Alignment of Campus Planners

- Administrative benefits from new PLF model:
 - 1. <u>Grad Division/Program Chairs -</u> receive new-student recruitment goals by graduate program that help them plan for future staffing and course offering needs
 - 2. <u>Associate Deans/Enrollment Management receive</u> new-student recruitment goals by undergraduate program that help them manage the admissions and enrollment process
 - Academic Planning & Budget can utilize forecasting results that are quicker to produce and more closely tied to reality than prior model due to both (a) statistical improvements and (b) input from colleges

Appendix

- E-mail <u>ryan.johnson@ucr.edu</u> with questions
- Special thanks to Bryce Mason for his help on this presentation and project