Text Analytics of Open-Ended Survey Data: Techniques and Applications

Xiaohui Zheng Institutional Research and Academic Planning University of California, Office of the President

> Presentation at CAIR Conference San Diego, CA November 20th, 2014

Presentation Outline

Four Parts

- Introduction
- Data Processing
- Analytic Techniques
- Application

Text Analytics

- Automated processing of texts
- Derive information from unstructured texts
- Statistical and machine learning techniques
- Highly interdisciplinary: statistics, computer science and linguistics

Text Mining vs. Data Mining

- A variation of data mining
- Data mining: structured data
- Text Mining: unstructured/semi-structured data
- Examples: Open responses, full-text docs, html files, Tweets

Values

- Processing texts in large volumes at high speed
- Academic and business intelligence applications
- Survey research: Open-response analysis
- Business applications: detect spams, classify news, marketing research

Limitations

- Complexity in natural language
 - Spelling variations
 - Linguistic patterns
 - Contextual meaning
 - Semantic ambiguity

Process

- Text Import
- Text Transformation
- Document-by-Term Matrix

Text Import

- Corpus: a collection of texts
- Texts from different formats
- Supported formats: Txt, Word, Excel, Pdf, Html, etc.

Text Transformations

- Remove special characters
- Convert upper cases to lower cases
- Remove numbers, punctuations, whitespace
- Remove stopwords with no substantial meaning
- Replace synonyms (e.g. 'pay' with 'salary')

Document-by-term Matrix

- A structured representation
- Describes the frequency of terms
- Documents as rows, terms as columns and counts as cells
- Fundamental unit where we perform text analytics

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	2	0	4	3	0	1	0	2
Doc2	0	2	4	0	2	3	0	0
Doc3	4	0	1	3	0	1	0	1

Techniques

- Frequent Terms
- Weighted Frequencies
- Word Cloud
- Associations
- Concept Linking
- Text Clustering

Frequent Terms

- obtain term frequencies by summing the column counts
- Identify most/least frequent terms

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	2	0	4	3	0	1	0	2
Doc2	0	2	4	0	2	3	0	0
Doc3	4	0	1	3	0	1	0	1
Doc4	0	1	0	2	0	0	1	0
Doc5	0	0	2	0	0	4	0	0
Doc6	1	1	0	2	0	1	1	3
Doc7	2	1	3	4	0	2	0	2
Sum:	9	5	14	14	2.	12	2.	8

Weighted Frequencies

Term frequency-inverse document frequency (TF-IDF)

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

TF= # times term appears/ # of terms in the doc How frequently a term occurs in a document

IDF=log (total # of docs/# of docs with the term)
Weighs down the frequent terms and scales up rare ones

Word Cloud

- Visualize relative frequencies of words
- Term size proportional to its frequency
- Add colors to words at different frequency levels

Term Association

- Correlation between a given term and all the other terms
- Correlation indicates how closely related two terms are
- Concept linking graph: Visually display correlations among frequent terms

Text Clustering

- Group documents with similar contents
- Unsupervised learning: clustered developed on the fly
- No single algorithm that works best in all situations:
 - Hierarchical clustering
 - K-means clustering

Survey Question

8.	In th	e past	ear, have you seriously considered leaving UC	OP?
	•	No	[Go to Question 11]	
	_			

Yes

Installing 'tm' package

Text Import

```
> x <- read.csv("X:\\Climate Survey\\opentext.csv", header = F)
> q9<- Corpus(DataframeSource(x))

> x <-file.path("X:/Climate Survey/OpenText/files")
> q9<-Corpus(DirSource(x))

> inspect(q9)
<<VCorpus (documents: 332, metadata (corpus/indexed): 0/0)>>
[[1]]
<<PlainTextDocument (metadata: 7)>>
```

Text Transformations

- Default functions
- > q9 <- tm_map(q9, tolower)
- > q9 <- tm_map(q9, removePunctuation)
- > q9 <- tm_map(q9, removeNumbers)</pre>
- > q9 <- tm_map(q9, stripWhitespace)
- Customized functions
- > removeslash <- function(x) gsub("/", " ", x)
- > q9<- tm map(q9, removeslash)
- > myStopwords <- c(stopwords('english'), "ucop", "within", "etc", "feel", "like", "get")
- > q9 <- tm_map(q9, removeWords, myStopwords)

Document-by-Term Matrix

- # Constructs the matrix based on term frequencies
- > dtm<-DocumentTermMatrix(q9)
- # Constructs the matrix based on weighted frequencies
- > dtm2<-DocumentTermMatrix(q9, control=list(weighting = weightTfldf))</pre>
- # Adds up the counts by column
- >freq<-colSums(as.matrix(dtm2))
- # Outputs the summed frequencies into Excel
- > write.csv(as.matrix(freq), file="dtm2.csv")

Frequent Terms

Dorelle	Towns	TE IDE
Rank	Term	TF-IDF
1	retirement	38.9
2	salary	22.3
3	opportunity	22.3
4	lack	16.3
5	advancement	15.8
6	career	14.8
7	supervisor	13.0
8	department	11.7
9	management	11.4
10	position	11.0
11	climate	10.7
12	low	10.2
13	appreciated	8.9
14	issues	8.8
15	frustrations	8.4
16	overworked	8.4
17	environment	8.1
18	leadership	7.4
19	moral	7.2
20	uncertainty	7.1

Word Cloud ('wordcloud' package)

supervisor career overworked department issues frustrations appreciatedlow climate lack salary environment retirement opportunity position advancement management

Term Associations

Show all terms associated with 'lack' at corr>= 0.2

Correlation Plot ('Rgraphviz' package)

Cluster Analysis

- # Hierarchical cluster analysis using Ward's minimum variance criteria
- > distancematrix<-dist(matrix, method="euclidian")
- > model<- hclust(distancematrix, method="ward")
- # Display dendrogram
- > plot(model)
- # Add rectangles around the branches of the dendrogram highlighting clusters
- > rect.hclust(model, k=4, border="red")

Cluster Analysis

Terms	Cluster
advancement	1
career	1
opportunity	1
department	2
environment	2
lack	2
management	2
position	2
staff	2
supervisor	2
retirement	3
salary	4

The End