

Applying the Association Rules Mining Technique to Identify Critical Graduation Pathway Courses

2014 CAIR Conference

Afshin Karimi (akarimi@fullerton.edu) Ed Sullivan, Ph.D. (esullivan@calstate.edu)

November 19, 2014

Data Mining Techniques Used in Higher Education

- Prediction (and/or Classification)
- Clustering
- Relationship Mining

Relationship Mining

• Goal is to discover relationships between variables with data set with large number of variables

- 4 types of Relationship Mining:
 - Association Rules Mining
 - Sequential Pattern Mining
 - Correlation Data Mining
 - Causal Data Mining

Association Rules Mining

- Proposed by Agrawal et al in 1993
- If-then rules amongst variables
- Initially used for Market Basket Analysis
- Milk Purchase -> Cereal Purchase (5% support, 80% confidence)
 - 5% support: customers who buy both product (in any order) are 5% of all customers in the database
 - > 80% confidence: 80% of those who buy milk also buy cereal
- If student takes courses A and B, she will take course C (not necessarily in that order)

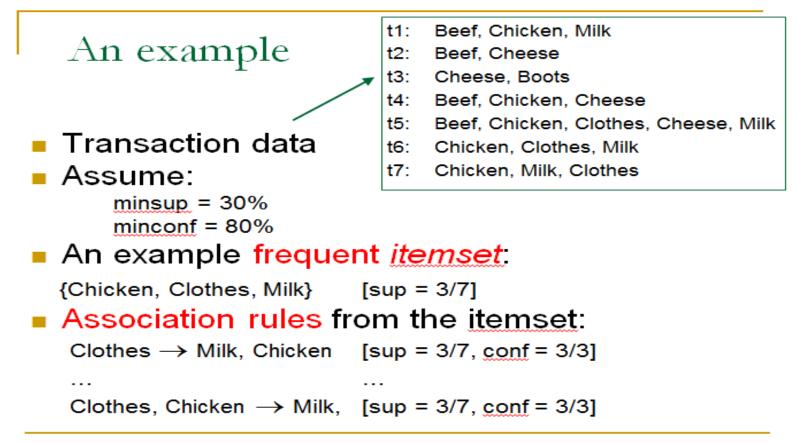
Association Rules Mining Examples

- Walmart study found young males buying beer on Friday afternoons also buy baby diapers
- Amazon recommending items based on your current browsing/buying selections as well as other customers' purchasing patterns
- Google search's auto-complete where after a word is typed in the search box, it suggests a follow-up associated search term

The Apriori Algorithm

- The best known algorithm for Association Rules Mining
- The algorithm is a two step process:
 - Find frequent itemsets
 - Use frequent itemsets to generate rules

Apriori algorithm, continued...


Step 1: Finding frequent itemsets:

Iterative process starting with scanning the database to find frequent 1itemsets (that meet min. support), then using a Join operation find larger frequent itemsets (through k-itemset)

Step 2: Generating association rules:

Using the found frequent itemsets and minium support and confidence, rules are established

CS583, Bing Liu, UIC

Slide from Bing Liu's course material – University of Illinois-Chicago

Input Data (Association Rules Mining)

Customer ID	Beer	Wine	Soda	Cheese	Soap	Apples	Ground Beef	Chips	Pasta Sauce	Gum	Wall Calendar	Ground Coffee	Postcard	Magazine	Mints	Orange
1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
2	1	0	1	1	0	1	0	1	0	0	1	0	0	0	0	0
3	0	1	0	0	1	0	0	0	0	0	0	0	1	0	1	0
4	0	0	1	0	0	0	1	0	1	0	0	0	0	0	0	1
5	0	0	0	0	1	0	0	1	0	0	0	1	0	1	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	1	0	0	1	0	1	0	0	0	1	1	0	0	0	1	0
8	1	1	0	0	0	0	0	1	0	0	0	0	1	0	0	1
9	0	1	1	0	0	0	1	0	1	0	0	0	0	1	0	0
10	0	0	1	0	1	1	0	0	0	0	0	1	1	0	0	0
11	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0
12	1	1	1	0	0	0	0	0	0	1	0	1	0	0	0	0
13	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0
14	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	1
15	1	0	0	0	0	1	0	0	0	0	0	0	1	1	0	1
16	0	1	1	0	1	0	0	0	0	1	0	0	0	1	0	0
17	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0
18	0	0	0	1	0	0	1	1	0	0	1	0	0	0	1	0
19	1	0	1	0	0	0	0	0	1	0	0	0	0	0	0	1
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
23	1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
25	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
26		1 TEONIVER	<mark>0</mark>	1	0	1	0	1	0	1	0	1	0	1	0	1

Problem with Association Rules Mining

• **Problem:** Algorithm discovers huge number of association rules (between one or more variables with one or more other variables), many of which are irrelevant

• **A Solution:** Use 'interestingness' measures to reduce the rule set

Interestingness

- Objective Interestingness:
 - Support
 - Confidence
 - Cosine
 - Added value
 - Lift
- Subjective Interestingness:
 - Unexpectedness
 - Actionability

Support

Let |X,Y| be the number of transactions that contain both X and Y

Support is the proportion of all transactions that contain both X and Y

Sup
$$(X \to Y) = |X, Y| / n \quad OR \quad P(X, Y)$$

 $Sup(X \rightarrow Y) = Sup(Y \rightarrow X)$

Confidence

Let |X| the number of transactions that contain X.

Confidence is the proportion of transactions that contain Y amongst the ones that contain X.

$$conf(X \rightarrow Y) = |X, Y| / |X|$$
 OR $P(X, Y) / P(X)$

 $conf(X \rightarrow Y) \neq conf(Y \rightarrow X)$

Cosine

(borrowing from cosine of angle between two vectors...)

Cosine (X -> Y) = $|X, Y| / \sqrt{|X| \cdot |Y|}$

- The closer cosine (X -> Y) is to 1, the more transactions containing item X also contain Y
- The closer cosine (X -> Y) is to 0, the more transactions contain item X without containing Y
- Cosine is a symmetric measure: cosine(X -> Y) = cosine (Y -> X)

Lift

 $lift(X \rightarrow Y) = conf(X \rightarrow Y)/P(Y)$

If $P(X, Y) = P(X) \cdot P(Y)$, lift is 1. This is the worst case (occurrence of X and occurrence of Y in the same transactions are independent events)

Subjective Interestingness

Subjective Interestingness is application domain- specific. Two such measures are:

- Unexpectedness: Grocery chain already knows about (Beer -> Chips) association rule, but not about the (Beer -> Diapers) association rule.
- Actionability: Rules that offer strategic information on which user can act on.

Association Rules Example

• Transfer Student Success Project in the Mihaylo College of Business & Economics

• Identify the gateway courses that prevent MCBE transfer students from timely graduation

Association Rules Example Continued...

MCBE Transfer Students Success:

- Examine CBE courses that new transfer students take AND fail during 1st term at Fullerton
- Find all Association Rules between all the variables (course failures) and a new variable that represents graduation in 4 years or less
- Use interestingness measures to focus on the relevant associations

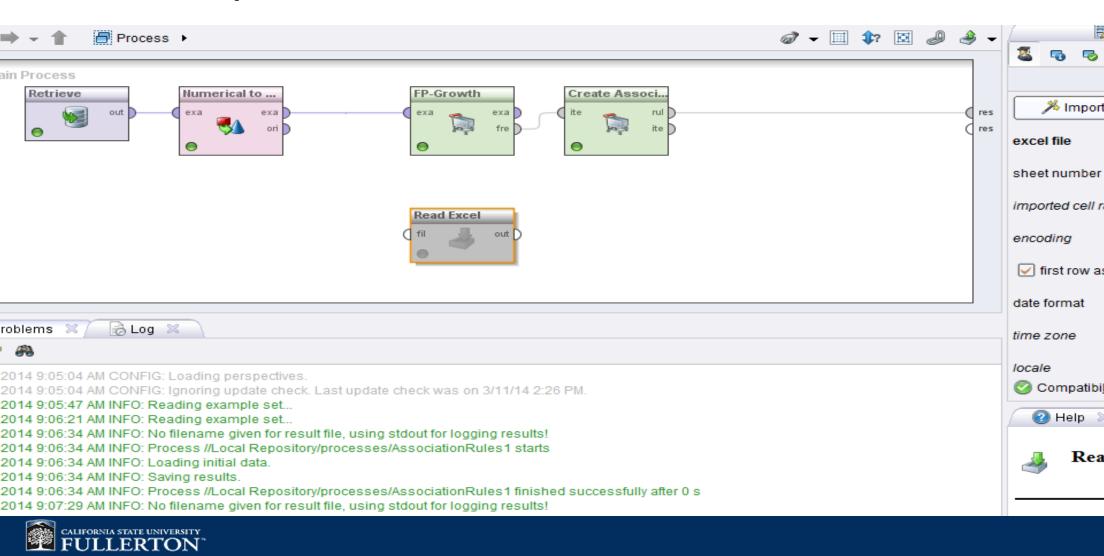
Association Rules Example Continued...

Input File Format

- Rows: fall 08 & 09 new transfer MCBE students who took at least one MCBE course during their 1st term (1,807 students)
- Columns: MCBE courses above students took during their 1st term PLUS Graduation variable that indicates if student graduated in 4 years or less (43 columns)
- Values:
 - 1: failed the course in 1st term (grade of C- thru F, including WU)
 - 0: passed the course in 1st term (grade of C or above) OR didn't take course in 1st term

Example Input File

Ŷ


cwid		NotGraduated	ACCT201A	ACCT201B	ACCT301A	ACCT302	ACCT307	ACCT364	BUAD201	BUAD210	BUAD301	ECON201	ECON202	ECON310	ECON315	ECON320	ECO
-	8906	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0797	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	
	6860	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	29249	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	23102	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
. 30	21375	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	\$1853	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	7215	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	0532	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
	6824	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6247	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6475	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8455	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6961	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
	9981	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	
	4777	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5 - E	7802	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	
- 3	5741	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	
1 A.	6024	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	6881	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	·
	174 1874 19963	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	·
		0	0	0	0	0	0	0	0	0	0	0	0	0	1	. 0	·
	2002	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	·
8 H H	5482	1	1	0	0	0	0	0	1	0	0	0	0	0	0 0	0	·
	5836 896	0	0	0				-		0	_	-	-	-	-		
			0	0					0	0							
	987	1	0	0			_		0	0	-	-	-	-	-	-	
	473	0	0	0		-			0	0			-	-	-	-	
	347	0	0	0						0			-	-			
	7982	0	0	0						0				-			
	5975	0	0	0				-		0			-		-		
	2369	0	0	0						0							
	5081	0	0	0		0			0	0				-	-		
8	7762	0	0	0		0	0	0	0	0		0	0	0	0		
	2135	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-

Association Rules Example Continued...

- Algorithm finds large number of rules between one or more variables with one or more (other) variables
- Here we focus on association rules between different course variables and graduation variable: (X -> Grad in 4 Yrs) where X is any of the 42 CBE courses.
- Furthermore, narrow the list by using Support & Confidence measures

RapidMiner 5 Software Demo

Association Rules Example Continued...

Results:

- Top 3 identified gateway courses are all 200 level courses (lower division core courses) that new transfer students take AND fail
- Graduation variable not really the 'target' variable

Future Work/Summary

- Further study of the identified gateway courses
- If order of events is important, use Sequential Mining method instead (not covered in this presentation)
- No need to have intimate knowledge of the algorithm used. Just need to compile model's input data file

Questions/Comments?

Contact: akarimi@fullerton.edu

