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Data Mining Techniques Used in Higher
Education

e Prediction (and/or Classification)
e Clustering
e Relationship Mining

.-f;':z_-; CALIFORNIA STATE UNIWERSITY
I FULLERTON"



Relationship Mining

 Goal is to discover relationships between variables with data
set with large number of variables

e 4 types of Relationship Mining:
— Association Rules Mining
— Sequential Pattern Mining
— Correlation Data Mining
— Causal Data Mining
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Association Rules Mining

 Proposed by Agrawal et al in 1993

e |f-then rules amongst variables

e Initially used for Market Basket Analysis

e Milk Purchase -> Cereal Purchase (5% support, 80% confidence)

» 5% support: customers who buy both product (in any order) are 5% of all customers in
the database

» 80% confidence: 80% of those who buy milk also buy cereal

e If student takes courses A and B, she will take course C (not necessarily
in that order)




Association Rules Mining Examples

e Walmart study found young males buying beer on Friday afternoons
also buy baby diapers

e Amazon recommending items based on your current browsing/buying
selections as well as other customers’ purchasing patterns

 Google search’s auto-complete where after a word is typed in the
search box, it suggests a follow-up associated search term




The Apriori Algorithm

e The best known algorithm for Association Rules Mining

e The algorithm is a two step process:
— Find frequent itemsets

— Use frequent itemsets to generate rules




Apriori algorithm, continued...

Step 1: Finding frequent itemsets:

Iterative process starting with scanning the database to find frequent 1-
itemsets (that meet min. support), then using a Join operation find
larger frequent itemsets (through k-itemset)

Step 2: Generating association rules:

Using the found frequent itemsets and minium support and confidence,
rules are established




t1: Beef, Chicken, Milk
_._ill 63311111316 t2: Beef, Cheese

t3: Cheese, Boots
/ t4: Beef, Chicken, Cheese

t5: Beef, Chicken, Clothes, Cheese, Milk
Transaction data t6: Chicken, Clothes, Milk

Assume' t7: Chicken, Milk, Clothes

An example frequent [femset:
{Chicken, Clothes, Milk} [sup = 3/7]

Association rules from the itemset:
Clothes — Milk, Chicken [sup = 3/7, conf = 3/3]

Slide from Bing Liu’s course material -
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Input Data (Association Rules Mining)

Orange:

Mints

Postcard Magazine

Ground
Coffee

Pasta wall
Gum
Sauce Calendar

Chips

Ground
Ch S0 Appl
ease oap pples Beef

Soda

Beer Wine

Customer
1]

10
11
12
13

14
15

16
17
18
19
20
21
22

23

24
25

)

1
Bl L) oY k

1

3
E
>
84
-
-
D
7 e




Problem with Association Rules Mining

* Problem: Algorithm discovers huge number of association rules
(between one or more variables with one or more other variables),
many of which are irrelevant

e A Solution: use ‘interestingness’ measures to reduce the rule set
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Interestingness

e Objective Interestingness:
e Support
 Confidence
e Cosine
e Added value
o Lift

e Subjective Interestingness:

* Unexpectedness
e Actionability
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Support

Let | X,Y | be the number of transactions that contain both X and
Y

Support is the proportion of all transactions that contain both X
and Y

Sup (X->Y)=|X,Y|/n OR P(XY)

Sup(X ->Y) =Sup (Y -> X)
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Confidence

Let |X| the number of transactions that contain X.

Confidence is the proportion of transactions that contain Y
amongst the ones that contain X.

conf(X->Y)=|X,Y| /IXI OR P(X,Y)/P(X)

conf(X ->Y) # conf(Y-> X)
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Cosine

(borrowing from cosine of angle between two vectors...)

Cosine (X->Y) = |X, Y| /A/|X]. |Y]

 The closer cosine (X->Y) is to 1, the more transactions containing item X also contain
Y

 The closer cosine (X->Y) is to 0, the more transactions contain item X without
containing Y

e Cosine is a symmetric measure: cosine(X ->Y) = cosine (Y -> X)
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Lift

lift(X -> Y) = conf(X -> Y)/P(Y)

If P(X, Y) = P(X) . P(Y), liftis 1. This is the worst case (occurrence
of X and occurrence of Y in the same transactions are
independent events)
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Subjective Interestingness

Subjective Interestingness is application domain- specific. Two
such measures are:

— Unexpectedness: Grocery chain already knows about (Beer -> Chips)
association rule, but not about the (Beer -> Diapers) association rule.

— Actionability: Rules that offer strategic information on which user
can act on.
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Association Rules Example

e Transfer Student Success Project in the Mihaylo College of Business &
Economics

e I|dentify the gateway courses that prevent MCBE transfer students from
timely graduation

- ‘_," CALIFORENTA STATE UNIVERSITY
L L. 0
| FULLERTON




Association Rules Example Continued...

MCBE Transfer Students Success:

e Examine CBE courses that new transfer students take AND fail during 15t
term at Fullerton

e Find all Association Rules between all the variables (course failures) and
a new variable that represents graduation in 4 years or less

e Use interestingness measures to focus on the relevant associations




Association Rules Example Continued...

Input File Format

e Rows: fall 08 & 09 new transfer MCBE students who took at least one MCBE course
during their 1%t term (1,807 students)

e Columns: MCBE courses above students took during their 15t term PLUS Graduation
variable that indicates if student graduated in 4 years or less (43 columns)

e \alues:
— 1: failed the course in 1t term (grade of C- thru F, including WU)

— 0: passed the course in 15t term (grade of C or above) OR didn’t take course in 1%
term
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Example Input File

MotGraduated ACCT201A ACCT20168 ACCT301A ACCT3ID2 ACCT30Y ACCT364 BUAD201 BUADZI10 BUAD3ID1 ECOM201 ECOM202 ECOM310 ECOM315 ECOM320 ECO

cwid




Association Rules Example Continued...

e Algorithm finds large number of rules between one or more variables
with one or more (other) variables

e Here we focus on association rules between different course variables
and graduation variable:

(X -> Grad in 4 Yrs) where X is any of the 42 CBE courses.

e Furthermore, narrow the list by using Support & Confidence measures




RapidMiner 5 Software Demo
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Association Rules Example Continued...

Results:

 Top 3 identified gateway courses are all 200 level courses (lower division
core courses) that new transfer students take AND fail

e Graduation variable not really the ‘target’ variable
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Future Work/Summary

e Further study of the identified gateway courses

e |f order of events is important, use Sequential Mining method instead
(not covered in this presentation)

* No need to have intimate knowledge of the algorithm used. Just need
to compile model’s input data file
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Questions/Comments?

Contact: akarimi@fullerton.edu
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