
HOW TO ASSESS EXPECTED VALUE ADDED: THE CLA METHOD  

Phillip Garcia 

 

The goal for administering the Collegiate Learning Assessment (CLA) test is to estimate 

how well graduating seniors from a specific college or university perform with regard to 

critical thinking, analytic reasoning, problem solving, and written communication.  The 

assumption is that students completing their undergraduate programs will perform better 

than an incoming group of undergraduates.  Thus the primary focus of each CLA 

participant is the contribution of its institution to student improvement, or value added.  

Detecting whether program completers improved over time is accomplished by 

comparing CLA scores between separate samples of freshmen and seniors.  A predictor 

variable, SAT (or ACT) score, is used to remove differences in Actual CLA test scores 

associated prior academic abilities.  The benchmarks for each campus comparison are 

statistical parameters derived from a national database of participating schools.  During 

the 2005-06 administration, there were 113 campus participants.   

 

The current research design practice for the CLA project is not conventional; it compares 

sample observations from two cross-sectional groups rather than tracking one group’s 

performance over time.   The CLA authors (see Klein, Shavelson, Benjamin, and Bolus, 

2007) provide no statistical proof for the derivation of their unorthodox method to detect 

value added, but they thoroughly document the parameters necessary to replicate their 

results.  For example, all the regression statistics that underpin the campus-specific 

analyses are listed in Appendix C of a report entitled Institutional Reports (see 

http://www.cae.org).  This is also the place where the CLA authors invite the reader to 

predict CLA scores for other alternative SAT scores. 

 

For anyone that accepts the authors’ invitation and then proceeds to systematically 

investigate the range of outcomes associated with the published regression parameters, it 

soon becomes clear that there is a slight defect in the approach used to amend CLA 

scores for prior differences in academic ability.  On the surface things look good.  The 

CLA authors begin by correctly using two separate regression equations to statistically 

control for the effects of prior differences; but what they fail to do is use a common 

parameter to simulate statistical equality between freshmen and seniors on their predictor 

variable.  What follows are a detailed explanation of their error and the identification of 

more appropriate statistical adjustments. There is also a brief examination of the CLA 

research design and the sample designed employed by institutions using the CLA test. 

 

UNEQUAL SLOPES  

Let’s start by specifying the null hypothesis for CLA performance level in traditional 

terms, that is, there is no difference between the two groups: 

 

H0: Actual Valued Added = Expected Value Added 

 

An expanded version of this equality can be expressed as follows: 

 

H0: {Actual(Yseniors) – Actual(Yfreshman)} = {Expected(Yseniors) – Expected(Yfreshman)} 
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Here, the actual Y values signify the mean CLA scores for a cross-sectional sample of 

seniors and freshmen for a campus and the expected Y values signify the corresponding 

linear estimates associated with each of the actual mean CLA scores.   

 

The two alternative hypotheses are expressed as follows: 

 

H1: {Actual(Yseniors) – Actual(Yfreshman)} > {Expected(Yseniors) – Expected(Yfreshman)} 

 

H2: {Actual(Yseniors) – Actual(Yfreshman)} < {Expected(Yseniors) – Expected(Yfreshman)} 

 

The expression for H1 indicates that the Actual Value Added is above expected 

performance level, and the expression for H2 indicates that the Actual Value Added is 

below expected performance level. 

 

To generate the campus-specific estimates of Expected Value Added for seniors, the 

CLA authors statistically rely on the parameters from two separate regression analysis. 

First they regress CLA scores (Y) on SAT scores (X) for freshmen observations, and then 

they do the same for senior observations.  Next they generate two expected CLA scores 

by inserting the Actual SAT mean score from each group into its corresponding 

regression equation.  The formula they use to predict each campus estimate is as follows: 

 

Expected Value Added  = Expected (Y2) – Expected (Y1) 

 

     = Y2’ – Y1’ 

 _  _ 

       = (a2 + b2X2) – (a1 + b1X1) 

 

where the subscript values 1 and 2 signify regression parameters derived from the 

separate samples of seniors and freshmen, respectively, where a is the actual intercept 

and b is the actual slope of the regression line derived from observations at all campuses, 

and whereXi signifies the actual mean SAT score for a specific campus. This procedure 

is meant to remove differences in Y associated with differences in X. 

 

The problem with the above procedure is that the two expected values defined above do 

not share a common adjustment for SAT scores (i.e., X2  ≠X1).  Two ways to attain 

predicted values that cancel out the effects of differing SAT scores is to either set the 

mean for seniors to the level observed for freshmen, or set the mean for freshmen to the 

level observed for seniors.  The next two equalities show how these two options are 

expressed in statistical terms. 

      _         _  

  Expected Value Added  =  (a2 + b2X1) – (a1 + b1X1) 

 

    or 

      _         _  

   Expected Value Added =  (a2 + b2X2) – (a1 + b1X2) 
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To illustrate the validity of the two adjustments cited above, let’s compare examples of 

their empirical results with hypothetical results generated by the CLA authors’ method.  

The most telling comparative results come from the special case where the mean SAT 

scores and mean CLA scores for both seniors and freshmen at a specific school equal the 

grand mean values observed across all participating schools during the 2005-06 

administration.  The comparative results using such values are displayed in table 1.   

  

TABLE 1.  Alternative Estimates of Expected Value Added 

Row Statistic Freshmen Seniors Value Added

1 a 394 448 

2 b 0.652 0.690 

3 Actual SAT 1074.0 1100.0 

4 Actual CLA 1094.0 1207.0 113.0

5 Expected CLA (CLA Method) 1094.2 1207.0 112.8

6 Expected CLA (X=1074) 1094.2 1189.1 94.9

7 Expected CLA (X=1100) 1111.2 1207.0 95.8

  Note: Regression parameters are from figure 1 and the means are from table 6, Institutional Report (n.d.). 

 

The results from the CLA method are displayed in row 5 and the alternative results are 

displayed in row 6 and 7.  The most noteworthy finding from table 1 is the equality 

between actual CLA scores and expected CLA scores for freshmen using the CLA 

method (compare rows 4 and 5).  This equivalence is not an accident.  Whenever the 

actual mean for the independent variable (i.e., X) is inserted into the regression formula 

for generating expected values of the dependent variable (i.e., Y), the result must be the 

mean for the observed dependent variable.  The general expression is: 

  _   _  

   Y = a + bX 

 

What the equality between actual CLA scores and expected CLA scores in table 1 reveals 

is that employing the CLA authors’ method for generating expected values for CLA 

scores does not result in the anticipated adjustment for the below average SAT scores 

exhibited by the freshmen observations.  The absence of any statistical adjustment 

confirms the inappropriateness of the CLA authors’ method.  The expected CLA score 

for freshmen should be higher than its actual CLA score because the freshmen averaged 

26 points lower than seniors on the SAT.   

 

The last two rows the show the derivation of Expected Value Added when inserting the 

statistically equalizes the two groups by entering the exact value of X into each regression 

equation.  These two adjusted scores indicate that the correct magnitude of the expected 

is about 96 points.  So, for this hypothetical example, the CLA method inflated Expected 

Value Added by 17 points (i.e., 113-96).  Therefore, results from the 2005-06 

administration might have mislabeled performance level regarding value added whenever 

freshmen and seniors at a campus differed noticeable in their SAT scores. 

 

EQUAL SLOPES 
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Now how should the effect of prior differences be removed if the two observed 

regression slopes (i.e., 0.652 and 0.690) were statistically homogeneous?  The traditional 

way to adjust for prior differences between two groups that separately produce equal 

regression slopes is to use the analysis of covariance (ANCOVA) technique, which 

employs a single regression line (see Kerlinger and Pedhazur, Chapter 10, 1973).   

Applying ANCOVA to the estimation problem at hand yields the following expression: 

 

Expected Value Added = Adjusted (Y2) – Adjusted (Y1) 

 

              = Y2(adj) – Y1(adj) 

   _      _   _      _           _   _ 

                            = {(Y2) – bc(X2-Xc)} - {(Y1) – bc(X1-Xc)} 

 

where Yi signifies the actual mean CLA score for either seniors or freshmen, Xi signifies 

the actual mean SAT score for both groups, Xc signifies the grand mean for the covariate 

(i.e., the mean SAT score derived from the pooled observations for both freshmen and 

seniors), and bc signifies the common slope derived from the pooled observations of both 

freshmen and seniors. 
 

TABLE 2.  Expected Estimate of Value Added for Equal SAT Scores 
Line Statistic Freshmen Seniors Value Added

1 a 421 421 

2 b 0.671 0.671 

3 Actual SAT 1074.0 1100.0  

4 Actual CLA 1094.0 1207.0 113.0

5 Grand Mean for SAT 1087.0 1087.0  

6 Adjusted CLA (ANCOVA) 1102.7 1198.3 95.6

 

The adjusted means scores for the two groups derived from the ANCOVA technique are 

displayed in the last row of table 2.  Here, the freshmen mean is higher than actual 

because that group scored below the average of the pooled SAT scores; and the senior 

mean is lower than actual because that group scored above the average of the pooled SAT 

scores.  The difference in expected CLA scores indicates the valued added when the two 

groups are statistically equal on the dependent variable.  The difference in expected 

values is just less than 96 points, or essentially the same difference as generated by 

contrasting the two alternative estimates listed in rows 6 and 7 in table 1.  The near 

identical differences confirm the appropriateness of the ANCOVA adjustment when 

slopes are essentially equal.  And unlike the regression results, ANCOVA yields one set 

of unique adjustments 

 

CROSS-SECTIONAL VS. LONGITUDINAL COMPARISONS 

A secondary research focus for CLA institutions is the assessment of the relative status of 

campus freshmen to national norms and a separate assessment of the relative status of 

campus seniors to national norms.  Here null hypotheses for freshmen and seniors is  

 

H0: Actual(Yseniors) – Expected (Yseniors)  = 0 
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H0: Actual(Yfreshman) – Expected(Yfreshman) = 0 

 

Here it is entirely legitimate to use just the parameters from the two separate regressions 

to test the two suppositions cited above, as the CLA authors do.  So CLA institutions can 

learn whether their freshman class is on par with the abilities of other campuses and then 

learn whether their seniors are on par too.  These results, of course, do not  reflect the 

notion of value added, but they do add context.  The CLA authors use the following 

display to describe what can be learned from CLA participation. 

 

 
 

Because the mean SAT scores are basically the same for the 2005-06 freshmen and 

seniors, the above estimate of value added (i.e., 112) is reasonable.  So the results 

indicate that an “average” freshmen class was transformed into an “above average” senior 

class because the value-added experience at the  institution was “well above average.”   

 

Another nagging thought is that seniors at many institutions may represent a special 

subset of all incoming freshmen: they are the survivors of the undergraduate curriculum.  

This probably is not the case for highly selective institutions that have graduation rates 

that exceed 80 percent; but it is a concern for less selective institutions that have much 

lower completion rates.   

 

At this time, 45 CLA institutions are piloting a longitudinal assessment of a freshmen 

cohort.  The use of longitudinal observations may still require the use of predictor 

variables or covariates to reduce the observed variability; but, certainly, the tracked 

observations will be more robust than the cross-sectional observations when it comes to 

the standard threats to validity, like selection bias, history, repeated testing, and 

regression to the mean (see Campbell and Stanley, 1966).   
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Because of attrition, samples sizes for the longitudinal observations will have to be larger 

than the minimum samples size recommended for the analysis of cross-sectional data.  Of 

course, larger numbers longitudinal observations will not automatically take care of 

issues like selection bias or experimental mortality.  For example, if incoming students 

are selected from convenient natural settings (e.g., orientation classes), will the selected 

students truly represent the various academic paths students follow at an institution?  Will 

differential time-to-degree patterns affect test performance?  Moreover, will it even be 

possible to capture all the sampled students that attain senior class status?  How to 

successfully select and a random sample of student for voluntary testing and then 

tracking those students for retesting four years later is something that still needs to be 

documented. 

 

SAMPLE SIZE 

The published results from the 2005-06 Institutional Report suggest that most of the 

participating schools appear to have sampled between 100 and 200 freshmen and a 

similar number of seniors.  So even if we assume that both the freshman and senior 

samples originated from populations that averaged 1100 on the SAT, they each would 

still have sizeable margins of error around their SAT estimates.  If the standard deviation 

for the SAT were 130, the 2005-06 observation for seniors, the error margins would 

range from a low of +18 SAT points to a high of +24 SAT points.  Of course, if the two 

cross-sectional groups originated from populations that did not share a common SAT 

mean score, then the probability of differing average SAT scores between freshmen and 

seniors would be much higher than the comparable probability associated with random 

error.   

 

TABLE 3.  95% Confidence Interval When Average SAT Equals 1100  

for Selected Degrees of Freedom 

95% Confidence Interval 

df  

t-values for 

α=.05 STDERR Minimum Maximum 

10 2.23 43 1004 1196 

20 2.09 30 1037 1163 

30 2.04 24 1051 1149 

40 2.02 21 1058 1142 

60 2.00 17 1066 1134 

120 1.98 12 1076 1124 

200 1.96 9 1082 1118 

300 1.96 8 1084 1116 

400 1.96 7 1086 1114 

500 1.96 6 1088 1112 

600 1.96 5 1090 1110 

1200 1.96 4 1092 1108 

2300 1.96 3 1094 1106 

 Note: Adapted from Downie and Heath, Appendix Table III (1965). 

 

Like all sample-based parameters, campus-specific CLA scores would probably benefit 

from larger rather than smaller numbers of students.  Certainly campuses should continue 

to sample at least 100 students for each comparison group; and they probably should be 

diligent to obtain equal numbers of freshmen and seniors.  Naturally, this all-purpose 
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recommendation applies to comparison groups derived from simple random sample 

procedures or stratified random sample procedures, that is, when every targeted student 

has an equal chance to be selected.  It does not apply to samples derived from cluster 

designs.  If CLA institutions are selecting freshmen and seniors from specific class 

sessions, then they are employing a cluster design.  The main benefit of the cluster design 

is reduced cost for gathering data.  The disadvantages are a possible bias in selection and 

larger sampling errors.  One study (Chatman, 2007), for example, warns researchers that 

use aggregate measures like the CLA test are sensitive to the presence or absence of 

certain students.  Data from the Undergraduate Survey administered to students at the 

University of California suggest that students in the Humanities would be more likely to 

score above average on the CLA and students in the physical sciences would be more 

likely to score below average.  Regarding the loss of statistical precision, the rule-of-

thumb formula for estimating the design effect of a cluster sample mean (Kalton, 1983) 

indicates that the standard error would be at least three times higher for the cluster sample 

than for a simple random sample, with the same number of observations.  Looking back 

at table 3, the estimated standard error for the SAT mean based on 120 observations is 12 

SAT points.  If the same estimate were drawn from 6 class sessions that each contained 

20 students, the standard error probably would be greater that 36 SAT points.  

There are nine sources of threat to internal validity. They are:  

CONCLUSIONS 

There is continuing pressure from multiple fronts for higher education institutions to 

regularly measure student learning with standardized instruments.  It could be that the 

statistical error present in the analysis of 2005-06 CLA outcomes is one indicator of how 

CLA researchers now might be moving too fast to satisfy the external demands for 

assessment.  The miscalculation in how to estimate Expected Value-Added was certainly 

not an obscure error.  All anyone needed to do to detect and correct the problem was 

check any classic text on how to compare two separate regression slopes or how to 

execute an analysis of covariance.  It may not be so important that the CLA researchers 

made the original error; mistakes happen.   But it is important that the error went 

undetected by any of the 130 institutions that administered the CLA test. 

 

Immediate use of cross-sectional approach to assessing value added is another indicator 

that CLA researchers maybe moving too fast.  Its primary asset seems to be that it will 

generate CLA results in the shortest possible observation period; and its other asset seems 

to be the ease of the test administration.  In contrast, the longitudinal approach will take 

much longer to yield terminal findings and it probably is the more difficult way to collect 

CLA test results.  Moreover the longitudinal approach is not free from all the threats of 

validity that plague the cross-sectional approach.  But, in the long run, the scientific 

literature suggests the longitudinal approach will produce the more robust findings on 

how much students learn as they move from college freshman to college senior status.    

 

The last indicator of haste is the lack of information on how cross-sectional samples were 

drawn at the 130 institutions that gathered CLA data in 2005-06.  It is not clear from the 

CLA documentation found on the Internet (http://www.cae.org) that CLA researchers 

provided guidelines for selecting students or that campuses adhered to any acceptable 

options.  The details of sampling designs should be of interest to those that collect cross-
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sectional data.  Such details, however, would be of less interest to those that focus on 

bivariate relationships derived from longitudinal data. 
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APPENDIX: Graphic Representations of Expected Added Value 

 

The graph in figure A1 graphically illustrates the three estimates of Expected Value 

Added when the SAT-CLA regression slopes between freshmen and seniors are assumed 

to be different.  Here, each estimate of Expected value Added is represented by a distance 

between the separate regression lines for freshmen (bottom) and seniors (top). The 

estimate derived by the CLA method is the diagonal dotted line that intersects the two 

regression lines at the expected Y value for freshmen (1094) and expected Y value for 

seniors (1207).  This is the flawed estimate.  The telling sign is that the dotted line does 

not vertically traverse the two regression lines.  The other two estimates are the more 

reasonable ones.  The estimate on the left reflects the assumption that both groups had 

equal SAT scores at the level observed for freshmen (i.e., 1074); the estimate intersects 

the freshmen line at Y’=1094 and the senior line at Y’=1189.  The estimate on the right 

reflects the assumption that both groups had equal SAT scores at the level observed for 

seniors (i.e., 1100); the estimate intersects the freshmen line at Y’=1111 and the senior 

line at Y’=1207. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1.  Three Regression Estimates of the Expected Value Added 

 

Fig. A2.  ANCOVA Estimate of the Expected Value Added  
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The graph in figure A2 illustrates the Expected Added Value generated by the analysis of 

covariance method, which assumes that the regression slopes between freshmen and 

seniors are statistically equal.  The plotted points represent the regression line generated 

the pooled observations of freshmen and seniors.  The vertical line represents the 

Expected Value Added, where the mean of X is equal to the pooled estimate for all 

freshmen and seniors.  The top endpoint of the vertical line reflects the Yadj.value for 

seniors (i.e., 1198) and the bottom endpoint reflects the Yadj. value for freshmen (i.e., 

1103). 
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Comment on 

Philip Garcia’s Critique of the CLA: 

“How to Assess Expected Value Added: The CLA Method” 

 

Richard J. Shavelson 

Stanford University 

 

Philip Garcia rightly raises a concern about the CLA’s method for estimating value 

added.  In essence, he argues that the most appropriate model for estimating value added 

is the standard analysis of covariance.  This contrasts with the CLA’s approach in which 

the difference between the value-added estimate for freshmen is subtracted from the 

value-added estimate for seniors.  If, among other assumptions, freshmen and seniors 

have the same mean ACT/SAT scores in the population at each of the campuses assessed, 

his approach would be the appropriate one.  However, the assumption of equivalence 

may be problematic.  It turns out that Mr. Garcia’s recommendation is a special case of 

the CLA approach, the approach that would be taken when the assumption of equivalence 

is tenable.   

 

More specifically, Mr. Garcia’s position is that the CLA should use a single regression 

equation for estimating value added, not the difference between two equations that the 

CLA currently uses.  The expected value added by any particular campus, then, would be 

the difference between freshmen and senior mean scores adjusted for the common mean 

ACT/SAT scores.  Among other assumptions, this analysis of covariance approach 

assumes that the freshmen and seniors are representatively sampled from the same 

population and any differences between mean ACT/SATs of the two groups arises only 

by chance. Hence an average the two groups' ACT/SAT scores would provide a better 

estimate of the common population mean than either one, and the single-equation 

analysis of covariance would make the appropriate adjustment (all else equal). 

 

However, the underlying assumption of equivalence between freshmen and seniors on 

their ACT/SAT scores is quite likely untenable in most practical applications of the CLA 

(and the MAPP and the CAAP) for two reasons.  First, student recruitment to take the 

CLA on each campus is not done randomly. Rather, volunteers are recruited and their 

recruitment is very difficult.  Consequently, it is quite possible that the samples of 

freshmen and seniors taking the CLA are not representative of all freshmen and seniors 

on the campus.  Second, due to churning of students between their freshmen and senior 

years—with some students dropping or stopping out and others entering in between 

freshman and senior years—we should not necessarily assume that ACT/SAT scores 

balance out on average and the freshmen and seniors have comparable mean scores. 

Indeed, as ACT/SAT predicts GPA in most colleges, we might reasonably expect, on 

balance, that the seniors would represent a more selective population than the freshmen. 

 

If the assumption of equivalence of freshman and senior populations holds, the analysis 

of covariance would provide a better model for value added than the current one used by 

the CLA.  However, there is good reason to suspect the assumption does not hold.  

Consequently the analysis of covariance does not make the proper adjustments for value 
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added.  Rather, the CLA’s use of the difference in expected value added recognizes that 

the mean ACT/SAT scores probably differ in the population and so estimates value added 

for freshmen and seniors separately and then takes the difference. 
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REPLY TO SHAVELSON’S RESPONSE 

 

The CLA method of using cross-sectional data to generate value added scores is so 

unorthodox that it does not fall into any of the categories normally associated with quasi-

experimental or non-experimental research designs.  So people that promote or critique 

the method cannot rely entirely on codified terms or symbols when they converse.  In 

hindsight, I confess that I might have presented my case better if I had not categorized 

my reanalysis of CLA data as results from “two separate regression equations” and 

results from an “analysis of covariance.”  Both of these expressions denote very specific 

notions about who is being observed and the nature of their regression slopes. 

Unfortunately, some of the notions truly do not apply to the CLA method.  So I take 

some responsibility for Dr. Shavelson’s overall assessment that the gist of my paper was 

to suggest that an analysis of covariance was the better statistical technique for detecting 

value added scores from extant CLA data.  That was not my intent.  What I had hoped to 

do was show that the CLA method does not generate valid scores for expected value 

added scores and I offered alternative results from both an analysis of separate 

regressions and an analysis of covariance to make my point.  Since that tack proved to be 

unsuccessful, I think it best now that I simply restate my critique, excluding any 

references to the use of separate or common regression equations. I stand by my original 

conclusion.  But this time around, I want to make clear up front the real bottom line: as a 

rule, cross-sectional data from unrelated cohorts of freshmen and seniors cannot generate 

valid estimates for a complete analysis of value-added scores for the CLA test or any 

other test.   
THE PROOF 

I’ll begin my discussion of valid estimates by restating how to detect value added scores 

when the appropriate data have been collected, longitudinal observations; and then 

discuss the statistical adjustments that might be made when longitudinal data are not 

available.  Like before, my starting point is the null hypotheses for value added scores. 

The null hypothesis for longitudinal observations collected at two time points is 

H0 = Actual (Posttest) – Actual (Pretest) =  

        Expected (Posttest) – Expected (Pretest)    eq. 1 
That can be expressed symbolically as  

H0 = Y2 – Y1 = Y’2 – Y’1          eq. 2  
where Y’ equals an expected score and the subscripts represent the before (1) and after 

(2) time points.  If the parameter X equals an SAT/ACT score for an institution, then the 

expected added value derived from the pretest- and posttest can be expressed as  

Y’2 -Y’1= {a2 + b2(X)} – {a1 + b1(X)}      eq. 3 
Now, by substitutions, the null hypothesis can be expressed as the equality between an 

observed difference and an expected difference based on two separate regression lines. 

H0 = Y2 – Y1 = {a2 + b2(X)} – {a1 + b1(X)}     eq.4 
For me, eq. 4 represents the analytic standard for detecting value added. 

The problem at hand has been that the CLA data collected to date do not accommodate 

usage of the analytic standard.  Because the pre-test and posttest scores have been cross-

sectional observations, the extant CLA data on seniors have not include observations for 

Y1 and the data collected for freshmen do not include observations for Y2.  So the 

challenge the CLA team accepted was to find reliable estimates for either the two pretest 
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scores, Y1 and Y’1 for the current crop of senior.  I do not believe the CLA team always 

made the best choices. 

Before comparing how the CLA team handles estimates for the missing pretest data for 

seniors versus how I would handle it, I want to make it assure the reader that the value 

added scores derived by the CLA method did emerge from a computational formula that 

mimics the same computational formula denoted by eq. 1.  For the record, the CLA 

version of eq. 1 is sometimes represented as 
H0 = Actual (Posttest) – Expected (Posttest) =  

Actual (Pretest) – Expected (Pretest)     eq. 5 
But this, by itself, is not a problem.  In two steps the terms in eq. 5 can be rearranged to 

look exactly like eq. 1.  So the CLA method approached the missing data problem the 

same way I did: it specified an analytical standard and then sought to enter surrogate 

measures for the two pieces of absent information.  It did not seek to remedy the situation 

by injecting any new variables into the analysis. 

First, here is how they chose to estimate Y’1 at time1 for seniors with cross-sectional data 

from freshmen observations taken in the same academic year.  Using the subscript s to 

signify seniors and subscript f to signify freshmen, the equality is 

Y’1  =  {as + bs(Xs)} - {af + bf(Xf)}      eq. 6 
The alternative I put forward in my original paper was  

Y’1  =  {as+ bs(Xs)} - {af  + bf (Xs)}      eq. 7 
Both equations assume that the regression parameters for freshmen observed at time1 are 

the best linear predictors for the unobserved regression parameters for seniors.  This is 

not a leap of faith.  We both believe that the general expression af + bf(X) has predictive 

validity.  T he latest graphic posted by the CLA team shows how stable the xy-regression 

line is for freshmen across cohorts (see figure A in the appendix).  The difference is that 

my equation (eq. 6) assumes that the best X estimator for generating an expected pretest 

CLA score for seniors should be the observed SAT/ACT score for seniors.  My choice is 

based on the logic of the analytic standard.  In eq. 4, the value of X cannot change over 

time, so the value of X must be the same for both the Y’1 term and the Y’2.   It follows, 

then, that the value of X should be the same in both terms for any alternative equation 

one eventually chooses to employ.  

Now, what surrogate measure did the CLA team select for the Y1, the observed pretest 

for seniors?  It was the observed CLA score for freshmen.  Thus the CLA score for new 

undergraduates was assumed to be the same as the CLA scores for students that entered 

the university as new undergraduates at least 3.5 years earlier.  I cannot think of any 

rationale for making that assumption for the range of schools involved in the CLA 

project. 

To start, the test data collected by the CLA team do not support that assumption.  If, for 

instance, the pretest scores for the two cross-sectional groups were essentially the same, 

then you would expect their SAT scores should be essentially the same.  They were not.  

For the first CLA administration the mean for observed seniors at all schools was, on 

average, 44 points higher than the comparable mean observed for freshmen.  In the 

second administration, the difference at all schools was, on average, 37 points, again, 

with freshmen exhibiting the lower score.   
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I can think of some institutions where the assumption that pretest scores for freshmen in a 

fall term might be a good surrogate of pretest scores for a contemporary group of seniors.  

They would be elite schools that enroll students from a lofty restricted range of SAT 

scores that also exhibited six-year graduations rates at 80 percent or above.  Perhaps a 

small, but elite liberal arts school would be the perfect example.  However, I cannot 

imagine the assumption holding up for most of the less selective schools (SAT < 1000 

present in the CLA administrations, or the moderately selective schools (i.e., 1000 < SAT 

< 1150). At these institutions the standard deviation for SAT scores can be larger than 

those observed among the freshmen that took the CLA at either administration (i.e., 

around 145 points).  For example, at the 23 campuses of the California State University, 

the standard deviation for SAT scores at less selective campuses has been around 165 

points, and around 155 points for moderately selective campuses.  Moreover, the 

graduation rates less selective and moderately selective schools have been between 40 

and 60 percent.  At that range, it would be hard to argue that seniors represent a random 

sample of incoming freshmen. 

Now let’s go back to the standard (eq. 4).  If the data represented longitudinal data, of 

course, the following formula would be a valid expression for estimating the true value of 

Y1 

Y1 = {a2 + b2(X2)} – {a1 + b1(X1) – Y2      eq. 9    

But when the data are cross-sectional, neither the CLA adjustment for Y’1 (eq. 6) nor my 

adjustment for Y’1 (eq. 7) yields a valid estimate of Y1.  Thus  

Y1 ≠ {as + bs1(Xs)} – {af + bf (Xf) – Y2      eq. 10 

  

and  

Y1 ≠ {as + bs(Xs)} – {af + bf1(Xs) – Y2      eq. 11  

Bottom line: if the cross-sectional data at hand do not yield a valid estimate Y1, then the 

same data cannot yield a valid estimate of value added. 
Valid Estimates 

At best the cross-sectional CLA data collected so far can offer a partial glimpse of value-

added.  I’ll illustrate what you can estimate using the statistics posted for the total sample 

in the 2006-07 CLA administration.  They are displayed in the table 1 (see below).  The 

first two rows list the linear parameters for the two observed regression lines; the third 

and fourth rows list the observed SAT scores and the observed CAL scores for all 

institutions. 

Table 1. 2006-07 Sample Statistics for All Institutions 

Statistic 

(1) 

Freshmen  

(2) 

Seniors  

a 346 397 

b 0.69 0.72 

Mean SAT Score  1067 1104 

Actual CLA Score  1057 1243 

Source: http://www.cae.org/content/pdf/CLA_2006-2007_Sample_Institutional_Report.pdf, 

table 9, page 16; retrieved on November 19, 2007. 

The values listed in table 2 (see below) are derived directly from the values listed in table 

1.  The first row in table 2 lists the two expected CLA scores generated by eq. 6 and their 

difference.  The expected value added equals 84.  The second row lists the observed CLA 
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score for seniors, and the third row lists the difference between the observed CLA score 

for senior and the expected CLA score for seniors. The figure 51 at the bottom of column 

3 indicates that the actual seniors CLA score exceeds the expected score.  As I said, the 

results are limited, but they are all that the cross-sectional data can legitimately bear. 

Table 2.  Valid Estimates for Expected Value Added and 

Actual versus Expected CLA for Seniors 

 

(1) 

Freshmen 

(2)  

Senior 

(3) 

Value 

Added 

Expected CLA Score 1108 1192  84 

Actual CLA Score  1243  

Actual versus Expected   51  

 

The last table I want to review lists hypothetical results using the standard CLA method.  

The numbers in table 3 (see below) were derived from the parameters listed above in 

table 1 and the format of table 3 mimics campus reports that CLA distributes to its each 

of its participants. My first comment is that the assessment of actual versus expected 

CLA scores are completely legitimate for the two cross-sectional groups.  The -25 at the 

bottom of the freshmen column indicates that the freshmen scored below expectation and 

the score of 51 shows that the seniors score higher than expected.  In contrast, the 

strikethrough values listed in column 3 represent illegitimate estimates of value added.  

The estimate of expected valued added, 110, is erroneously high because there was a 

large gap in SAT scores between the observed freshmen and observed seniors (1067 

versus 1104).   The estimate 186 is erroneous because there is no foundation for assuming 

that the cross-sectional freshmen CLA score (1057) is the best estimate for the 

unobserved pretest scores for seniors.  And the difference between actual value added and 

expected value added, 76, is erroneous because it is based on two flawed estimates. 

Table 3.  A Sample of the Standard CLA Output using 

2006-07 Sample Statistics for All Institutions 

2006-07 Summary Data 

(1) 

Freshmen  

(2) 

Seniors  

(3) 

Value 

Added 

Mean SAT Score  1067 1104  

Expected CLA Score  1082 1192 110 

Actual CLA Score  1057 1243 186 

Actual versus Expected  -25 51 76 

 

FINAL REMARKS 

For the 2005-06 CLA administration, the two separate regression lines the CLA web site 

currently posts (see the lighter lines in the appendix) denoted a set of expected value 

added scores that ranged from 73 to 96 CLA points.  When a school’s SAT score was 

around 1073 (the average for the 2006-07 data), the expected value added was about 83 

CLA points.  When I looked at some of the examples that were posted for individual 

schools with more or less average SAT/ACT scores, the expected values that were listed 

exceeded 100 CLA points.  That inconsistency caught my eye as a red flag.  If the 

regressions had been based on longitudinal data, all the estimates for the expected value 
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added scores should have landed between 73 and 96 CLA points.  So I began my 

investigation on how expected value added scores should be determined.   My first 

conclusion was that the CLA method generates inflated estimates of expected value 

added when the cross-sectional groups differed on their observed SAT scores.  Naturally, 

the larger the difference observed between groups, the greater the distortion.  Upon 

further investigation, I discovered other outcomes derived from the CLA method were 

problematic too.   

The big ticket item for me was never whether to use analysis of variance or separate 

regression equations to detect expected value added with collected CLA data.  That 

problem can be easily resolved by dividing observed slope differences by an appropriate 

standard error.  If the ratio is greater than 1.96, use separate regression lines; if not, use 

analysis of covariance.  Rather the big ticket item was always whether to use longitudinal 

data or cross-sectional data in the assessment of value added scores.  I see no reason to 

ignore the conventional wisdom: longitudinal data fit the bill better than cross-sectional 

data.  When longitudinal data are applied to the problem of detecting value added, then 

the one-group pretest-posttest pre-experimental
 
research design describes the analytic 

approach one should use. The CLA team should resume their complete analysis of value 

added when the necessary longitudinal are available.   
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APPENDIX

 
Source: http://www.cae.org/content/pdf/CLA_2006-2007_Sample_Institutional_Report.pdf, page 

25; retrieved on November 19, 2007. 

 

 

 

 


