Using a Random Forest model to predict enrollment

Ward Headstrom Institutional Research Humboldt State University CAIR 2013

Overview

- Forecasting enrollment to assist University planning
- The R language
- The Random Forest model
- Binary Logistic Regression model
- Cautions and Conclusions
- The example I am going to use is projecting *New* enrollment. These techniques can easily be applied to predicting...
 - Retention
 - Graduation
 - Other future events

Simple enrollment projections

- 1) how many student enrolled last year?
- 2) enhance by breaking it down into subgroups
- 3) possibly use linear regressions (trends)

Applicant Counts Report Options								
Time frame	To-date Final							
Semester	Fall <u>Spring Summer</u> <u>Academic year</u>							
Cohort	Applicants Admits Active Admits Confirmed	Registered						

Final Fall Registered report generated: 03-OCT-13										
Applicant type	Fall 2007	Fall 2008	Fall 2009	Fall 2010	Fall 2011	Fall 2012	Fall 2013	Fall 2014		
First-time UG	1,058	1,202	1,382	1,316	1,292	1,242	1,369			
Lower-div xfer	302	156	198	103	149	141	50			
Upper-div xfer	636	612	572	786	795	807	921			
Returning UG	110	102	<mark>9</mark> 9	84	108	108	96			
Masters	199	185	174	175	133	147	182			
Credential	168	117	124	118	111	107	92			
Second Bachelor	63	47	35	3	1	2	4			
Unclassified PB	17	7	10	4	5	2	5			
Transitory	176	183	30	71	<mark>9</mark> 9	43	30			
Totals	2,729	2,611	2,624	2,660	2,693	2,599	2,749			

4) enhance further by looking at to-date information

	To-date F	all Applica	nts			-				
	report gener	ated: 05-NO	¥-13			Ce		nsus ei	nsus enrollm	nsus enrollment
Applicant type	Fall 2011	Fall 2012	Fall 2013	Fall 2014	3,500					
First-time UG	2,947	3,304	3,692	4,361					_	• Tr
Lower-div xfer	1	132	13	10	3,000	-		_	_	
Upper-div xfer	973	862	1,064	1,017	2,500					U
Returning UG	44	19	33	22	2,000			_		— Se
Masters	34	17	32	31	1,500					
Credential	6	5	2	8	1,000			_	_	N
Second	10				500					
Unclassified PB	4		1		0					■ R(
Transitory	ansitory					. '. <u>`</u> .		י א	с. <i>к</i> . с	> _> _<
Totals	4,019	4,339	4,837	5,449	Fall2011	1201	1202	2	1201 edio.	Fall201A projection
					43.	4 ³ . 4	en 4	<i>8</i> .	s. droi	ar. brot
	Final Fal	l Registere	d							
	report gener	ated: 03-OC	:T-13		Fall 2014				"to-o	"to-date" yield
Applicant type	Fall 2011	Fall 2012	Fall 2013	Fall 2014	Projection	use this			Fall 2011	Fall 2011 Fall 2012
First-time UG	1,292	1,242	1,369		1,617	1,617	R		44%	44% 38%
Lower-div xfer	149	141	50		38	50			14900%	14900% 107%
Upper-div xfer	795	807	921		880	880			82%	82% 94%
Returning UG	108	108	96		64	96			245%	245% 568%
Masters	133	147	182		176	182			391%	391% 865%
Credential	111	107	92		368	92		18	50%	50% 2140%
Second	1	2	4		4	4		1	0%	0% -
Unclassified PB	5	2	5		-	5		125	%	i% -
		40	30		34	30		-		-
Transitory	99	43	30		34	50				

2014 projection = 2013 "to-date" yield * 2014 apps = 1,369/3,692*4,361 = 1,617

2014-15 Projection on 05-NOV-13									
	Tota	al Headcou	nt	F	Resident FTE				
Student type	Fall 2013	Fall 2014	%change	Fall 2013	Fall 2013 Fall 2014 %cha				
Continuing Undergrad	5,299	5,624	5.8%	4,874	5,173	5.8%			
Returning Undergrad	96	96	0.0%	75	75	0.0%			
First-time Undergrad	1,368	1,617	15.4%	1,277	1,509	15.4%			
Transfer Undergrad	971	930	-4.4%	875	838	-4.4%			
Continuing/Returning Postbac	249	256	2.6%	172	177	2.6%			
New Postbac	278	283	1.8%	290	295	1.8%			
Transitory	32	32	0.0%	20	20	0.0%			
Totals	8,293	8,838	6.2%	7,583	8,088	6.2%			
	Tota	al Headcou	nt	Resident FTE					
Student type	Spring 14	Spring 15	%change	Spring 14	Spring 15	%change			
Continuing Undergrad	6,976	7,457	6.5%	6,348	6,786	6.5%			
Returning Undergrad	21	21	0.0%	19	19	0.0%			
First-time Undergrad	39	39	0.0%	35	35	0.0%			
Transfer Undergrad	408	408	0.0%	371	371	0.0%			
Continuing/Returning Postbac	430	439	2.1%	391	400	2.1%			

29

39

8,432

29

39

7,941

0.0%

0.0%

5.8%

26

35

7,226

26

35

7,673

0.0%

0.0%

5.8%

New Postbac

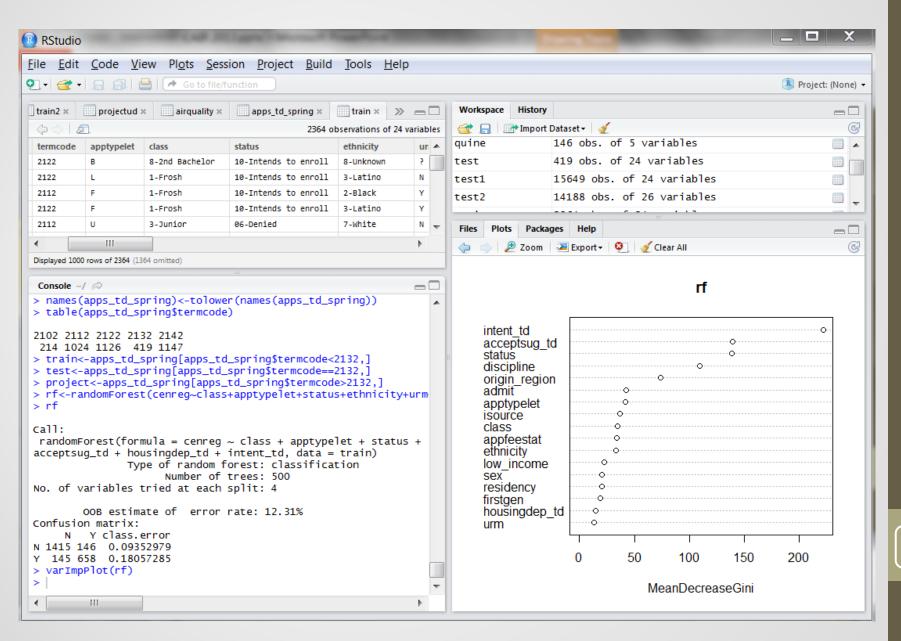
Transitory

Totals

But what about...

- Why applicant yield might not be the best predictor:
 - Admits more likely to enroll
 - Confirms more likely to enroll
 - Denied or withdrawn will not enroll
 - Housing deposits may be good indicator of intent
 - Local applicants more likely than distant applicants
 - Certain majors or ethnicities may be more likely to enroll
 - Do this year's applicants look like last year's?
- Ideally, we would like to use all the data we have about applicants to predict how likely they are to enroll.
 - Variables: demographics, academics, actions to-date
 - Model 1: Random Forest
 - Model 2: Binary logistic regression

The language R


CAIR comment: an emphasis on R would be "limiting to institutions that used other software".

- The first (only?) implementation of Random Forest models
- R is open source free to use
 - http://cran.us.r-project.org/
 - http://www.rstudio.com/ide/download/desktop
- Many online tutorials:
 - http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
 - <u>http://bioinformatics.knowledgeblog.org/2011/06/21/using-r-a-guide-for-complete-beginners/</u>
 - https://www.coursera.org/course/compdata
- www.researchgate.net/post/Which is better R or SPSS

R and RStudio overview

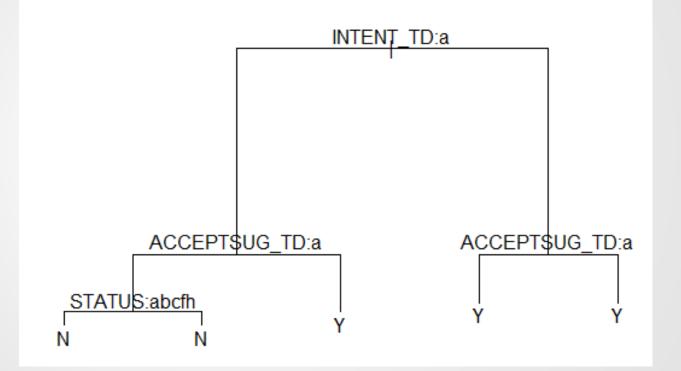
- Function-based: function(data,options)
- Case-specific language
- 4 panes help, history, import dataset, packages
- Object types: data.frame, vector, scalars, factor, models
- Useful commands:
 - command line console can be used as calculator
 - assignment -> or <-
 - functions: na.omit(), summary(), table(), tolower()
 - subsets: dataframe[row select, column select]
 - graphics: hist(), plot()
 - library(), especially library(randomForest)

RStudio

Data files

- All the data fields you think might help predict yields
 - Major discipline
 - Region of origin
 - Sex
 - Ethnicity
 - Academic preparation
- Actions "to-date"
 - Accepted SUG
 - Confirmed intent to enroll
 - Paid housing deposit
- Institutional actions
 - Admit
 - Deny/cancel

Import data into R


> apps_td_spring <- read.csv("C:/Users/ward/Google Drive/IRP/CAIR 2013/apps_td_spring.csv")
> summary(lange td_spring)

> summary(apps_td_sp	ring)			
ID	TERMCODE	APPTYPELET	CLASS	
Min. : 10002145	Min. :2102	U :2515	3-Junior :2424	4
1st Qu.: 11272781	1st Qu.:2112	R : 426	1-Frosh : 520	D
Median : 12152872	Median :2122	F : 339	4-Senior : 46	3
Mean :423225308	Mean :2125	L : 311	2-Sophomore : 22	1
3rd Qu.:946602927		м : 242	6-Masters : 15	6
Max. :953487425	Max. :2142	N : 44	E-Extended Ed: 8	б
		(Other): 53	(Other) : 60	D
ST.	ATUS	ETHNICITY	URM SEX	ORIGIN_REGION
03-Applied	:1168 7-Whi		?: 329 F:1957	7-Los Angeles:926
10-Intends to enrol	1:1047 3-Lat			1-Local :801
07-Admitted	: 749 6-Two			2-Northern CA:412
06-Denied	: 286 8-Unk	nown : 309		3-SF Bay :409
05-Complete	: 258 4-Asi	an : 250	1	X-Other state:289
05-In Review	:196 2-Bla	ck : 243		6-Central CA :242
(Other)	: 226 (Othe	an : 250 ck : 243 r) : 143		(Other) :851
RESIDENCY EXCA		LOW_INCOME FIRST		INTENT_TD ADMIT
R :3403 :	13 N:2937	N:2901 : 21	16 Min. :1.340	N:2752 N:2062
N : 168 N:38	93 Y: 993	Y:1029 N:170	05 1st Qu.:2.680	Y:1178 Y:1868
X : 147 Y:	24	Y:200		
F : 93			Mean :3.001	
WUE : 87			3rd Qu.:3.350	
: 16			Max. :4.330	
(Other): 16			NA'S :3609	
ACTIVE EOP_INTERE	ST HOUSINGDEP_	TD	ISOURCE APPFI	EESTAT
N: 498 : 2	N:3815	APPLICATION	:2579 CC	:2079
Y:3432 N:2645	Y: 115	STUDENT INIT	IATED:1011 FW	:1447
Y:1283		TRAVEL	: 117 PD	: 142
		DIRECT MAIL	: 84 ?	: 116
		CAMPUS VISITO	DR : 76 NP	: 113
		REFERRAL	: 53	: 13
		(Other)	: 10 (Other)): 20

Decision Trees

> tr<-tree(CENREG~ACCEPTSUG_TD+INTENT_TD+STATUS,data=apps_td_spring)
> plot(tr)

> text(tr)

Random Forest Model

- Developed by Leo Brieman and Adele Cutler
- Plan: grow a random forest of 500 decision trees
 - randomForest(cenreg~variable1+variable2+...,data=train)
 - Randomly picks fields for each tree
 - Randomly selects rows to exclude from each tree
- Measure of variable importance
- Out Of Box estimate of error rate and Confusion matrix

```
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 4
OOB estimate of error rate: 12.52%
Confusion matrix:
N Y class.error
N 1414 147 0.0941704
Y 149 654 0.1855542
```

Run new data through all 500 trees and let them vote

Random Forest model of applicant yield

```
> names(apps_td_spring)<-tolower(names(apps_td_spring))</pre>
> table(apps_td_spring$termcode)
2102 2112 2122 2132 2142
 214 1024 1126 419 1147
> train<-apps_td_spring[apps_td_spring$termcode<2132,]</pre>
> test<-apps_td_spring[apps_td_spring$termcode==2132,]</pre>
> project<-apps_td_spring[apps_td_spring$termcode>2132,]
> rf<-randomForest(cenreg~class+apptypelet+status+ethnicity+urm</p>
> rf
call:
randomForest(formula = cenreg ~ class + apptypelet + status +
acceptsug_td + housingdep_td + intent_td, data = train)
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 4
        OOB estimate of error rate: 12.31%
Confusion matrix:
       Y class.error
     N
N 1415 146 0.09352979
  145 658 0.18057285
> varImpPlot(rf)
```

varImpPlot(rf)

rf

intent_td					••••••••••
acceptsug_td			••••••••••••••••••	>	
status			c)	
discipline			0		
origin_region		•••••			
admit		0			
apptypelet		>			
isource	0-				
class					
appfeestat					
ethnicity	•••••				
low_income	•••••				
sex	•••••				
residency	·····				
firstgen	0				
housingdep_td	0				
urm	0				
					I
	0	50	100	150	200
			-D0	:	
		Mea	InDecreaseG	INI	

1st tree in Random Forest

> head(getTree(rf	,1,labelvar=TR	UE),7)			
left daughter r			split point	status	prediction
1 2	3	admit	1	1	<na></na>
2 4	5	apptypelet	210	1	<na></na>
3 6	7	class	21	1	<na></na>
4 8	9	discipline	3543222	1	<na></na>
5 10	11	acceptsug_td	1	1	<na></na>
6 12	13	status	192	1	<na></na>
7 14	15	status	320	1	<na></na>
> tail(getTree(rf	,1,labelVar=TR	UE),7)			
	,1,labelVar=TR right daughte		split point	status	prediction
	right daughte			status 1	prediction <na></na>
left daughter	right daughte	r split var		status 1 -1	
left daughter 545 550	right daughte	r split var 1 discipline		1	<na></na>
left daughter 545 550 546 0	right daughte	r split var 1 discipline 0 <na></na>		1 -1	<na> N</na>
left daughter 545 550 546 0 547 0	right daughte	r split var 1 discipline 0 <na> 0 <na></na></na>		1 -1 -1	<na> N</na>
left daughter 545 550 546 0 547 0 548 0	right daughte	r split var 1 discipline 0 <na> 0 <na> 0 <na></na></na></na>		1 -1 -1 -1	<na> N</na>
left daughter 545 550 546 0 547 0 548 0 549 0	right daughte	r split var 1 discipline 0 <na> 0 <na> 0 <na> 0 <na></na></na></na></na>		1 -1 -1 -1	<na> N</na>

For categorical predictors, the splitting point is represented by an integer, whose binary expansion gives the identities of the categories that goes to left or right. For example, if a predictor has four categories, and the split point is 13. The binary expansion of 13 is (1, 0, 1, 1) (because $13 = 1*2^{-0} + 0*2^{-1} + 1*2^{-2} + 1*2^{-3})$, so cases with categories 1, 3, or 4 in this predictor get sent to the left, and the rest to the right.

Testing and making a Projection

- > test\$rf<-predict(rf,test)
 > table(test\$cenreg,test\$rf)
 - N 196 33 Y 21 169

N Y 229 190 > 190/(229+190)

> table(test\$cenreg)

[1] 0.4534606

> table(project\$apptypelet,predict(rf,project))

	N	Y
В	2	1
С	0	0
F	81	36
L	51	3
Μ	75	9
Ν	2	5
Ρ	0	0
R	90	43
U	506	243

> table(predict(rf,project))
 N Y
807 340

Random Forest projects that 42% of current Spring apps will enroll, compared to 45% of last year's apps to-date and 34% of training years'.

Binary Logistic Regression

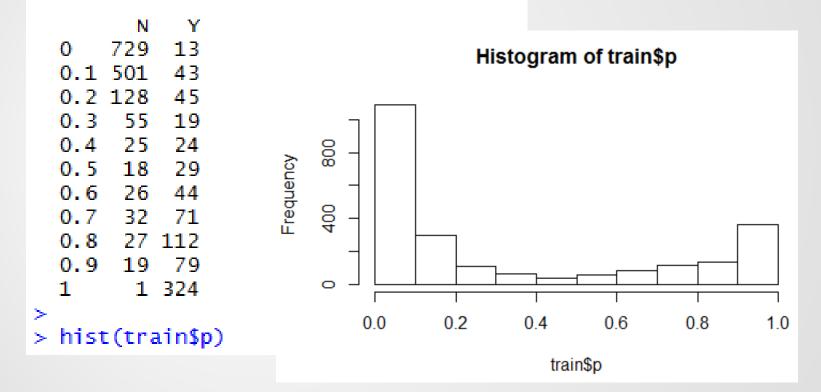
- p(x) is the probability that x will occur, where x is a binary object (Y/N, 1/0, true/false)
- $\log\left(\frac{p(x)}{1-p(x)}\right) = B_0 + B_1 * X_1 + B_2 * X_2 + B_3 * X_3 + \cdots$
- B_n represents calculated coefficients
- X_n represents the value of dependent variables
- Break up factor variables into many terms where X_n is 1 or 0
- Can manipulate the result to return the probability (between 0 and 1) that x will occur, given the state of a particular set of dependent variables.
- Difficult to predict outcome of a single individual
- Can sum probabilities to estimate total

Binary logistic regression model of applicant yield

```
> blr<-glm(cenreg~status+acceptsug_td+intent_td,data=train,family=binomial)</pre>
> summary(blr)
Call:
glm(formula = cenreg ~ status + acceptsug_td + intent_td, family = binomial,
   data = train)
Deviance Residuals:
             10 Median
   Min
                             3Q
                                     Max
-2.8129 -0.5208 -0.4253 0.1125
                                  2.6771
Coefficients:
                         Estimate Std. Error z value Pr(>|z|)
(Intercept)
                         -2.3575
                                     0.1225 -19.246 < 2e-16 ***
status04-Withdrew app
                         -0.4305
                                   0.7284 -0.591
                                                     0.5545
                         1.0736 0.2348 4.573 4.80e-06 ***
status05-Complete
status05-In Review
                         0.4282 0.3183 1.345 0.1785
                          -1.1979 0.5217 -2.296 0.0217 *
status06-Denied
status07-Admitted
                                     0.1709 4.748 2.05e-06 ***
                         0.8117
status08-Not coming
                    -14.2086
                                   438.0949 -0.032 0.9741
status10-Housing deposit 0.5734
                                     0.8411 0.682 0.4955
status10-Intends to enroll 1.1399 0.2370 4.809 1.52e-06 ***
                          6.2944 1.0096 6.234 4.54e-10 ***
acceptsug_tdY
                                   0.1984 11.954 < 2e-16 ***
intent_tdY
                           2.3712
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 3029.8 on 2363 degrees of freedom
Residual deviance: 1643.7 on 2353 degrees of freedom
AIC: 1665.7
Number of Fisher Scoring iterations: 15
```

> anova(blr,test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit


Response: cenreg

Terms added sequentially (first to last)

	Df	Deviance	Resid. Df	Resid. Dev	Pr(>Chi)	
NULL			2363	3029.8		
class	8	80.07	2355	2949.7	4.743e-14	×××
apptypelet	5	30.78	2350	2919.0	1.035e-05	***
status	8	822.38	2342	2096.6	< 2.2e-16	***
ethnicity	- 7	29.78	2335	2066.8	0.000104	***
urm	2	5.08	2333	2061.7	0.078694	
sex	2	2.29	2331	2059.4	0.317455	
origin_region	11	38.74	2320	2020.7	5.863e-05	***
residency	6	43.73	2314	1977.0	8.357e-08	***
low_income	1	42.23	2313	1934.7	8.131e-11	***
firstgen	2	12.23	2311	1922.5	0.002211	**
admit	0	0.00	2311	1922.5		
isource	8	23.25	2303	1899.2	0.003060	**
appfeestat	9	27.71	2294	1871.5	0.001066	**
discipline	21	37.19	2273	1834.3	0.015998	*
acceptsug_td	1	303.95	2272	1530.4	< 2.2e-16	***
housingdep_td	1	65.38	2271	1465.0	6.176e-16	***
intent_td	1	157.64	2270	1307.4	< 2.2e-16	***
Signif. codes	: ()'***'0.	.001 '**' (0.01 '*' 0.0	05 '.' 0.1	''1

> train\$p<-predict(blr,train,type="response")</pre>

> table(round(train\$p,1),train\$cenreg)

BLR model – testing and projecting

```
>
> sum(test$cenreg=="Y")
[1] 190
> test$p<-predict(blr,test,type="response")
> sum(test$p)
[1] 182.7157
```

```
> project$p<-predict(blr,project,type="response")
> sum(project$p)
[1] 324.4795
```

Binary Logistic Regression predicted 324 of current Spring applicants will enroll, compared to 340 projected by Random Forest model.

Cautions and Conclusions

- Null or new values in variables will cause problems
- Beware of to-date variables (e.g. intent_td). Make sure that procedures have not changed in a way that will affect behavior.
- R is a very powerful tool which can be very useful if you are willing to invest some time learning it.
- Multivariate models *may* improve the accuracy of your predictions. Corroborate with simple models and consultation with involved staff.

Questions? Comments?

This presentation:

www.humboldt.edu\irp\presentations.html

My email: <u>Ward.Headstrom@humboldt.edu</u>